- 1秒极速求解PDE:深度神经网络为何在破解数学难题上独具天赋?
- 来源:机器之心
机器之心报道编辑:力元两种基于深度神经网络的新方法,均可成功求解 PDE,并且能够以更快的速度、更简单的方式建模复杂的系统。有趣的是,和大多神经网络一样,我们猜不透它们为什么如此优秀。
研究者们致力于使用偏微分方程(Partial differential equation,PDE)来描述涉及许多独立变量的复杂现象,比如模拟客机在空中飞舞、模拟地震波、模拟疾病在人群中蔓延的过程、模拟基本力和粒子之间的相互作用。
一直以来,求解复杂问题的偏微分方程都是世界级的难题。CPU 往往需要几百万个小时才能得出相对复杂的偏微分方程,而且越复杂的问题越难用偏微分方程解决。无论是设计更好的火箭发动机,还是模拟气候变化,我们都需要更有效的方法来解决这些问题。
近来,研究者在偏微分方程的求解上取得了令人激动的新进展。他们构建了新型的人工神经网络,实现了更快求解偏微分方程。经过训练后,新型的神经网络不但可以求解单个偏微分方程,而且无需再度训练即可求解整个偏微分方程族。
瑞士苏黎世联邦理工学院的数学家 Siddhartha Mishra 表示,传统的神经网络通常将数据从一个有限维空间映射或转换到另一个有限维空间,但新型的深层网络能够在无穷维空间和无穷维空间之间映射。 毫无疑问,这样的技术将加速涉及偏微分方程的许多模型。作为开发团队的一员,Anima Anandkumar 说:「最终,我们的目标是取代非常缓慢且昂贵的传统求解器。」
当然,新的方法绝不仅仅是作用于加速。对于只有数据却不知用哪种偏微分方程进行建模的情况,训练数据然后使用新型神经网络是唯一的手段。
神经网络入场求解 PDE
偏微分方程有用且极其难以解决的原因是它的复杂性。这使它们能够对各种现象进行建模,例如,如果建模人员想知道流体在空间中任何一点(也称为流场)以及在不同时间下的速度和压力,可能会使用 Navier-Stokes 偏微分方程进行建模。求解 Navier-Stokes 方程,将获得一个描述系统内容的公式。如果对初始和边界条件有足够的了解,例如在时间 t = 0 时的流场值,则可以使用数学工具来解析偏微分方程。
但是偏微分方程常常复杂到没有通用的分析解决方案,对于 Navier-Stokes 方程的最通用形式尚且如此:数学家尚未证明是否存在唯一解,更不用说通过分析实际上找到它们了。
甚至在超级计算机上,用数值法来解决复杂的偏微分方程可能也要花费数月的时间。而且,每次更改初始或边界条件或所研究系统的几何形状都必须重新开始。同样,使用的增量越小(网格越细),模型的分辨率就越高,数值法所需的时间就越长。
2016 年,研究人员尝试将通常用于图像识别的深度神经网络应用于解决偏微分方程。首先,研究人员生成了用于训练深度网络的图像数据。其中输入的是有关对象几何形状和流体初始条件的 2D 图像编码信息,而输出的是相应速度场的 2D 快照。
有了数据,研究人员开始训练他们的神经网络,以学习这些输入和输出之间的相关性。训练主要是先比较输出与预期输出的差别,然后用算法调整神经元的权重,以最大程度地减少生成的输出和预期输出之间的差异。重复此过程,直到输出误差在可接受的范围。 让神经网络学习了如何解决偏微分方程是令人兴奋的,但还有很大的不足。一旦在一定的网格尺寸上进行训练,神经网络就变得非常特定于该分辨率。深度网络已经学会了预估将数据从一个有限维空间映射到另一个空间的函数。但以不同的分辨率求解偏微分方程时,如果想对流场有一个更细致的了解,或更改初始和边界条件,则需要重新开始训练,学习预估新的函数。
DeepONet
而现在的深度神经网络,不仅可以学习预估函数,还可以学习将函数映射到函数的「算子」,并且似乎没有遭受神经网络和其他计算机算法从数据中学习的维数问题。例如,如果想使神经网络的错误率从 10%降至 1%,则所需的训练数据量或网络规模可能会指数增长,从而导致任务无法实现。 在这之前,研究人员必须弄清楚如何让神经网络学习算子来解决偏微分方程。布朗大学的 George Karniadakis 表示,学习算子是从无穷维空间到无穷维空间。算子作用于一个函数,然后将其转换为另一函数。比如,一个算子将一个函数转换为其导数(比如 x 的正弦转换为 x 的余弦),其输入和输出端都是无穷维的。
George Karniadakis。
学习预估算子的深度网络可用于一次求解整个偏微分方程族,对一系列初始和边界条件以及物理参数建模相同的现象。这样的偏微分方程族是输入端的一组函数,而对偏微分方程公式的相应解决方案则由输出端的函数来表示。
1995 年的一项研究表明,浅层网络可以看成是算子。由于涉及神经网络,因此此类算子也叫神经算子,即实际算子的近似值。在 2019 年 10 月,Karniadakis 和他的同事把这种理论延伸到了深度神经网络,提出了「DeepONet」,一种可以学习这种算子并一次求解多个偏微分方程的深度神经网络架构。
论文链接:http://arxiv-export-lb.library.cornell.edu/pdf/1910.03193
DeepONet 的独特之处在于它的分叉式架构,该架构在两个并行网络(「分支」和「主干」)中处理数据。前者学习预估输入侧的许多函数,后者学习预估输出侧的函数。然后,DeepONet 将两个网络的输出合并,以学习偏微分方程所需的算子。训练 DeepONet 的过程包括反复地展示使用数字求解器生成的一族偏微分方程的输入、输出数据,并在每次迭代中调整分支网络和主干网络中的权重,直到整个网络出现的错误量可以被接受为止。 因此,DeepONet 一旦经过训练,就会学会预估算子。它可以在输入端获取代表偏微分方程的数据,然后将其转换为输出端偏微分方程解决方案的数据。假设有 100 个代表了训练数据中没有的初始 / 边界条件和物理参数以及所需的流场位置的样本被提供,那么 DeepONet 可以在不到一秒的时间提供流场。
DeepONet 架构图。
但是,即使 DeepONet 跟数值求解器一样快速,它仍必须在训练期间执行密集的计算。当必须用大量数据训练深度网络以使神经算子越来越精确时,这可能会成为一个问题。
那么,神经算子还能更快吗?
傅里叶神经算子
去年,加州理工学院的 Anima Anandkumar 和普渡大学的 Kamyar Azizzadenesheli 共同建立了一个称为傅立叶神经算子(FNO)的深度神经网络。
论文链接:https://arxiv.org/pdf/2010.08895v2.pdf
研究者声称新的架构使网络具有更快的速度,能将函数映射到函数,从无穷维空间到无穷维空间,并且在偏微分方程上测试了该神经网络。
Anima Anandkumar。
解决方案的核心是傅立叶层:在训练数据通过神经网络的每一层之前,先对其进行傅里叶变换。然后,该层通过线性运算处理数据,再执行傅立叶逆变换回原始格式。此过程显然比 DeepONet 的计算更直接,并且能够通过卷积偏微分方程与其他函数的数学运算来求解偏微分方程。在傅立叶领域中,卷积相当于一个简单的乘法,将经过傅立叶变换的数据通过一层已训练过权重的人工神经元传递,然后进行傅立叶逆变换。最后,FNO 学习了整个偏微分方程族的算子,将函数映射到函数。
傅里叶神经算子架构图。
FNO 深度神经网络同时拥有极快的运行速度。例如,在一个需要进行 30000 次仿真(包括 Navier-Stokes 方程)的求解过程中,对于每个仿真,FNO 花费了不到一秒的时间;而 DeepONet 耗时 2.5 秒;传统的求解器则大概需要花费 18 个小时。
总结
很显然,DeepONet 与 FNO 这两种方法都会超越传统的求解器。两个团队的方法都是成功的,但是与大多黑盒化的神经网络一样,目前我们尚不清楚它们为什么如此出色,以及是否在所有情况下都如此出色。 经过一年的努力,今年 2 月研究人员发表了对 DeepONet 架构长达 112 页的数学分析。研究证明这种方法是真正通用的,不仅仅是偏微分方程,DeepONet 可以将输入端的任何函数集映射到输出端的任何函数集。
而对 FNO 的数学分析尚未完成。不过对于没有确定的偏微分方程的现象,学习神经算子很可能是建模此类系统的唯一方法。比如交通问题,编写精确捕捉交通动态的偏微分方程几乎是不可能的,但是可以学习的数据量却非常之多。
参考内容:https://www.quantamagazine.org/new-neural-networks-solve-hardest-equations-faster-than-ever-20210419/
KDD Cup 2021赛题分享:智能调度优化交通出行
4月23日20:00-21:00,机器之心特邀参与组织2021 KDD Cup赛题的郑冠杰博士,分享「强化学习在智能交通领域的应用」,深入介绍通过数据科学的方法优化交通灯调度,优化城市出行规划。
分享分为三个部分:智能交通信号灯领域现状、开发经验分享以及近期在举行的KDD Cup城市大脑挑战赛。
点击阅读原文,直达直播间。
© THE END 转载请联系本公众号获得授权投稿或寻求报道:content@jiqizhixin.com
研究者们致力于使用偏微分方程(Partial differential equation,PDE)来描述涉及许多独立变量的复杂现象,比如模拟客机在空中飞舞、模拟地震波、模拟疾病在人群中蔓延的过程、模拟基本力和粒子之间的相互作用。
一直以来,求解复杂问题的偏微分方程都是世界级的难题。CPU 往往需要几百万个小时才能得出相对复杂的偏微分方程,而且越复杂的问题越难用偏微分方程解决。无论是设计更好的火箭发动机,还是模拟气候变化,我们都需要更有效的方法来解决这些问题。
近来,研究者在偏微分方程的求解上取得了令人激动的新进展。他们构建了新型的人工神经网络,实现了更快求解偏微分方程。经过训练后,新型的神经网络不但可以求解单个偏微分方程,而且无需再度训练即可求解整个偏微分方程族。
瑞士苏黎世联邦理工学院的数学家 Siddhartha Mishra 表示,传统的神经网络通常将数据从一个有限维空间映射或转换到另一个有限维空间,但新型的深层网络能够在无穷维空间和无穷维空间之间映射。 毫无疑问,这样的技术将加速涉及偏微分方程的许多模型。作为开发团队的一员,Anima Anandkumar 说:「最终,我们的目标是取代非常缓慢且昂贵的传统求解器。」
当然,新的方法绝不仅仅是作用于加速。对于只有数据却不知用哪种偏微分方程进行建模的情况,训练数据然后使用新型神经网络是唯一的手段。
神经网络入场求解 PDE
偏微分方程有用且极其难以解决的原因是它的复杂性。这使它们能够对各种现象进行建模,例如,如果建模人员想知道流体在空间中任何一点(也称为流场)以及在不同时间下的速度和压力,可能会使用 Navier-Stokes 偏微分方程进行建模。求解 Navier-Stokes 方程,将获得一个描述系统内容的公式。如果对初始和边界条件有足够的了解,例如在时间 t = 0 时的流场值,则可以使用数学工具来解析偏微分方程。
但是偏微分方程常常复杂到没有通用的分析解决方案,对于 Navier-Stokes 方程的最通用形式尚且如此:数学家尚未证明是否存在唯一解,更不用说通过分析实际上找到它们了。
甚至在超级计算机上,用数值法来解决复杂的偏微分方程可能也要花费数月的时间。而且,每次更改初始或边界条件或所研究系统的几何形状都必须重新开始。同样,使用的增量越小(网格越细),模型的分辨率就越高,数值法所需的时间就越长。
2016 年,研究人员尝试将通常用于图像识别的深度神经网络应用于解决偏微分方程。首先,研究人员生成了用于训练深度网络的图像数据。其中输入的是有关对象几何形状和流体初始条件的 2D 图像编码信息,而输出的是相应速度场的 2D 快照。
有了数据,研究人员开始训练他们的神经网络,以学习这些输入和输出之间的相关性。训练主要是先比较输出与预期输出的差别,然后用算法调整神经元的权重,以最大程度地减少生成的输出和预期输出之间的差异。重复此过程,直到输出误差在可接受的范围。 让神经网络学习了如何解决偏微分方程是令人兴奋的,但还有很大的不足。一旦在一定的网格尺寸上进行训练,神经网络就变得非常特定于该分辨率。深度网络已经学会了预估将数据从一个有限维空间映射到另一个空间的函数。但以不同的分辨率求解偏微分方程时,如果想对流场有一个更细致的了解,或更改初始和边界条件,则需要重新开始训练,学习预估新的函数。
DeepONet
而现在的深度神经网络,不仅可以学习预估函数,还可以学习将函数映射到函数的「算子」,并且似乎没有遭受神经网络和其他计算机算法从数据中学习的维数问题。例如,如果想使神经网络的错误率从 10%降至 1%,则所需的训练数据量或网络规模可能会指数增长,从而导致任务无法实现。 在这之前,研究人员必须弄清楚如何让神经网络学习算子来解决偏微分方程。布朗大学的 George Karniadakis 表示,学习算子是从无穷维空间到无穷维空间。算子作用于一个函数,然后将其转换为另一函数。比如,一个算子将一个函数转换为其导数(比如 x 的正弦转换为 x 的余弦),其输入和输出端都是无穷维的。
学习预估算子的深度网络可用于一次求解整个偏微分方程族,对一系列初始和边界条件以及物理参数建模相同的现象。这样的偏微分方程族是输入端的一组函数,而对偏微分方程公式的相应解决方案则由输出端的函数来表示。
1995 年的一项研究表明,浅层网络可以看成是算子。由于涉及神经网络,因此此类算子也叫神经算子,即实际算子的近似值。在 2019 年 10 月,Karniadakis 和他的同事把这种理论延伸到了深度神经网络,提出了「DeepONet」,一种可以学习这种算子并一次求解多个偏微分方程的深度神经网络架构。
论文链接:http://arxiv-export-lb.library.cornell.edu/pdf/1910.03193
DeepONet 的独特之处在于它的分叉式架构,该架构在两个并行网络(「分支」和「主干」)中处理数据。前者学习预估输入侧的许多函数,后者学习预估输出侧的函数。然后,DeepONet 将两个网络的输出合并,以学习偏微分方程所需的算子。训练 DeepONet 的过程包括反复地展示使用数字求解器生成的一族偏微分方程的输入、输出数据,并在每次迭代中调整分支网络和主干网络中的权重,直到整个网络出现的错误量可以被接受为止。 因此,DeepONet 一旦经过训练,就会学会预估算子。它可以在输入端获取代表偏微分方程的数据,然后将其转换为输出端偏微分方程解决方案的数据。假设有 100 个代表了训练数据中没有的初始 / 边界条件和物理参数以及所需的流场位置的样本被提供,那么 DeepONet 可以在不到一秒的时间提供流场。
但是,即使 DeepONet 跟数值求解器一样快速,它仍必须在训练期间执行密集的计算。当必须用大量数据训练深度网络以使神经算子越来越精确时,这可能会成为一个问题。
那么,神经算子还能更快吗?
傅里叶神经算子
去年,加州理工学院的 Anima Anandkumar 和普渡大学的 Kamyar Azizzadenesheli 共同建立了一个称为傅立叶神经算子(FNO)的深度神经网络。
论文链接:https://arxiv.org/pdf/2010.08895v2.pdf
研究者声称新的架构使网络具有更快的速度,能将函数映射到函数,从无穷维空间到无穷维空间,并且在偏微分方程上测试了该神经网络。
解决方案的核心是傅立叶层:在训练数据通过神经网络的每一层之前,先对其进行傅里叶变换。然后,该层通过线性运算处理数据,再执行傅立叶逆变换回原始格式。此过程显然比 DeepONet 的计算更直接,并且能够通过卷积偏微分方程与其他函数的数学运算来求解偏微分方程。在傅立叶领域中,卷积相当于一个简单的乘法,将经过傅立叶变换的数据通过一层已训练过权重的人工神经元传递,然后进行傅立叶逆变换。最后,FNO 学习了整个偏微分方程族的算子,将函数映射到函数。
FNO 深度神经网络同时拥有极快的运行速度。例如,在一个需要进行 30000 次仿真(包括 Navier-Stokes 方程)的求解过程中,对于每个仿真,FNO 花费了不到一秒的时间;而 DeepONet 耗时 2.5 秒;传统的求解器则大概需要花费 18 个小时。
总结
很显然,DeepONet 与 FNO 这两种方法都会超越传统的求解器。两个团队的方法都是成功的,但是与大多黑盒化的神经网络一样,目前我们尚不清楚它们为什么如此出色,以及是否在所有情况下都如此出色。 经过一年的努力,今年 2 月研究人员发表了对 DeepONet 架构长达 112 页的数学分析。研究证明这种方法是真正通用的,不仅仅是偏微分方程,DeepONet 可以将输入端的任何函数集映射到输出端的任何函数集。
而对 FNO 的数学分析尚未完成。不过对于没有确定的偏微分方程的现象,学习神经算子很可能是建模此类系统的唯一方法。比如交通问题,编写精确捕捉交通动态的偏微分方程几乎是不可能的,但是可以学习的数据量却非常之多。
参考内容:https://www.quantamagazine.org/new-neural-networks-solve-hardest-equations-faster-than-ever-20210419/
KDD Cup 2021赛题分享:智能调度优化交通出行
4月23日20:00-21:00,机器之心特邀参与组织2021 KDD Cup赛题的郑冠杰博士,分享「强化学习在智能交通领域的应用」,深入介绍通过数据科学的方法优化交通灯调度,优化城市出行规划。
分享分为三个部分:智能交通信号灯领域现状、开发经验分享以及近期在举行的KDD Cup城市大脑挑战赛。
点击阅读原文,直达直播间。
科技
-
-
- 线下展会,市民畅享科技大餐
- 5月28日,是2021中国国际大数据产业博览会线下展最后一天,也是免费向市民开放的公众日。趁此机会,记者继续带您探秘国际综合馆(W1馆)、数字应用馆(W2馆)、前沿技术馆(E1馆)、智慧产业馆(E2馆)4...
- 贵阳晚报
-
-
-
- 为何新药研发、基因测序、卫星遥感的发展提速都需要它?
- 人类第一次完整全基因组的测序花了13年,在新技术的加持下,这个时间已经降低到1天以内;没有这项新技术加持,电影《阿凡达》的渲染可能需要上万年;这项新技术还让新药的研发周期大幅缩短,让卫星遥感定位精度...
- 华为
-
-
-
- 大型金属3D打印厂商钢研极光亮相TCT,展示强大的生产服务能力
- 2021亚洲3D打印、增材制造展览会 (TCT Asia)于2021年5月26日-28日在国家会展中心(上海)7.1馆隆重举办。作为官方战略合作媒体,南极熊将会全程现场报道(地址https://www.nanjixiong.com/foru
- 南极熊3D打印
-
-
-
- 美国国家情报委员会《全球趋势2040——竞争更激烈的世界》报告摘译
- 2021年3月,美国国家情报委员会(NIC)发布了每四年一度的全球趋势预测报告《全球趋势2040——竞争更激烈的世界》。NIC是美国最高层级的战略情报机构,该委员会的成员均为来自政府、学术界和私营部门的高级专家...
- 全球技术地图
-
-
-
- 数字让监管更加智慧 上交所成功举办首届全行业技术大会
- 5月28日,上交所成功举办主题为“数字赋能,守正创新”的首届全行业技术大会。中国证监会副主席赵争平出席大会并致辞指出,证监会高度重视资本市场科技化转型与发展,确定了“数字让监管更加智慧”的愿景。...
- 上海证券报
-
-
-
- 湾区智行||中科创达赵鸿飞:汽车“新物种”需要共通的操作系统|中国汽车报
- “我是谁?我来自哪里?我要到哪里去?”这是哲学史上永恒的三大命题,同样也是我们甚至是企业需要不断思考的问题。此次采访对象——中科创达软件股份有限公司就是一家勤于思考、擅于思考的企业。这家企业在不断...
- 中国汽车报
-
-
-
- 广电总局表彰虚拟现实视频、超高清视频等5类96个优秀项目!
- 广电总局共评选出互动视频、沉浸式视频、虚拟现实视频、云游戏、超高清视频等5类96个优秀项目,分获一、二、三等奖和优秀奖,包括《中央广播电视总台5G+VR融合制播系统——春节联欢晚会 (2017- 2021)节目VR制作...
- 广电头条
-
-
-
- 占据市场最新赛道,“中国制造”机器人迎来爆发期
- 【环球时报记者 邢晓婧 杨沙沙】配餐机器人、迎宾机器人、扫地机器人……不知不觉间,中国老百姓对出现在餐馆、医院、火车站、养老院等场景的机器人逐渐习以为常,甚至家中也出现扫地、娱乐等家用机器人。有统计...
- 环球网
-
-
-
- 最受关注展项出炉,2021年北京科技周闭幕不落幕!
- 5月28日下午,2021年北京科技周闭幕式在中关村国家自主创新示范区展示中心举行。北京市科委、中关村管委会相关负责人介绍了本届北京科技周举办情况以及最受关注的展项。市科委、中关村管委会二级巡视员王建新出...
- 科普北京
-
-
-
- 魔高一尺,道高一丈:上交所VPN攻防札记
- 本文选自《交易技术前沿》总第四十二期文章(2020年12月)谢毅 / 上海证券交易所 yxie@sse.com.cn相晓辉 / 上海证券交易所 xhxiang@sse.com.cn虚拟专用网络(以下简称“VPN”)系统、互联网业务系统、外网
- Android编程精选
-
-
-
- 绿色召集令——聚力创赢,共赴绿色能源新征程!
- 申耀的科技观察读懂科技,赢取未来!申耀的科技观察,由科技与汽车跨界自媒体人申斯基创办,18年企业级科技媒体工作经验,专注企业数字化、产业智能化、智慧城市、汽车科技内容的观察和思考。
- 申耀的科技观察
-
-
-
- 汉朔科技和微软(中国)联合推动 IoT+AI 赋能全球零售
- (本文阅读时间:4分钟)2021年5月20日,全球领先的零售数字化解决方案供应商汉朔与微软(中国)在北京举行战略合作备忘录签约仪式,以进一步推动其在零售行业的全球布局和数字化战略。根据战略合作备忘录,汉朔...
- 微软科技
-
-
-
- 关于安全访问服务边缘(SASE),你需要知道的事情
- 在企业纷纷拥抱数字业务的过程中,由于边缘计算、云服务、混合网络的逐渐兴起,使得本就漏洞百出的传统网络安全架构更加岌岌可危,而且远远无法满足企业数字业务的需要。为了应对这种情况,一个全新的模型——安...
- FreeBuf
-
-
-
- [报告]2021年中国新能源汽车行业洞察(附44页PDF文件下载)
- 新能源车大势将至,造车新势力差异化突围。以下为报告节选:......文│Mob研究院本报告共计:44页。如欲获取完整版PDF文件,请扫描下方二维码加入“车友圈”获取。#重磅推荐#需要批量下载和及时更新最新汽车行业...
- 汽车之地
-