- 人工智能核心技术产业白皮书!资本降温,白热化竞争来临[附下载]|智东西内参
- 来源:人工智能学家
01.人工智能核心技术产业发展总体态势
1、 深度学习技术进入升级优化阶段人工智能技术体系与产业体系错位发展,深度学习理论突破速度逐步放缓,产业开始步入高速发展阶段。目前,本轮深度学习理论突破速度开始放缓,技术红利的持续释放驱动图像分类、机器翻译等多类感知任务准确率大幅增长,步入升级优化期。人工智能本轮爆发初期主要在探讨算法理论的可能性,聚焦探索强化学习、迁移学习等新的学习方式以及 AlexNet、 VGG、 GoogLeNet 等结构多样的算法模型;算法理论的不确定性和技术的不成熟耗费产业界大量精力和时间,阻碍人工智能大规模应用进程。目前, 产业开始步入高速发展时期, 2020年技术标志性生产工具 TensorFlow 框架下载量爆发式增长, 仅一个月1超 1000 万次,占发布四年半下载总量( 1 个亿+) 的十分之一;同时,技术成本快速下降,同等算法水平所需计算量每八个月降低一倍,成本降低百倍, 业内涌现出研发平台、技术服务平台等多样化的平台形态, 工程技术正在引领产业快速发展。2、 寒冬并非低谷,产业生态已现加速构建态势资本寒冬已经出现。其中,预期过高是主要原因。人工智能企业增速明显放缓, 2019、 2020 年全球每年新增人工智能企业数量已不足 100 家, 且投融资的轮次后移趋势不断扩大。2020 年 B 轮及以上融资笔数占总笔数的 62.3%,较上一年增长 40%以上。同时,曾获大笔融资的知名创新企业由于预期过高、虚假宣传等原因退出产业舞台。曾对标英特尔的芯片企业 Wave Computing,是人工智能计算领域最受关注的独角兽之一, 2020 年 4 月由于数据流处理器性能不达预期而宣告破产;智能会计工具 ScaleFactor 宣称利用人工智能技术自动化生成财务报表, 但实际却部分采用人工外包方式处理, 在融资1 亿美元后于 2020 年 3 月宣告倒闭。此外, 资本早期对人工智能产业回报周期过于乐观是资本寒冬的另一原因。移动互联网在偏向工程属性的前提下,资本预期取得成效的时间为二到四年;与之相较,人工智能与传统行业核心业务深度融合,需更高的技术准确率和更深刻的行业理解力。因此,人工智能产业孕育时间更长,资本市场的期望和现实出现较大偏差。
虽然,可解释性、理解推理等局限性确已显现,但这是下一时期理论技术突破重点, 不能因此否定图像识别、语音合成、机器翻译等感知类任务上的应用技术成就和产业应用前景。目前,基 于深度学习理论的优化技术层出不穷, RegNet、 GPT-3 等模型不断提升视觉处理、阅读理解等基础智能任务水平,虚拟助手、多语种翻译等智能应用已开始进入规模化应用阶段,大量的行业应用场景加速深度融合,技术能力和优化速度可见 5 到 8 年的红利。业各环节逐步明晰,规模化应用突破已现曙光。人工智能技术在消费互联网领域发展速度较快,智能推荐、视觉识别、语音助手等智能技术能力已深度应用至电商、社交、资讯等消费互联网平台以及手机、无人机等消费终端中,并加速与核心业务进行整合。当前,智能技术正在向更多的行业领域渗透,融合渗透仍需时日孕育。相较于消费互联网领域,传统行业的知识获取和积累需要较长时间,应用场景碎片化的特点导致低成本、易用、泛化能力较强的能力平台构建需较长周期。总体来看,人工智能产业正处于 S 曲线中快速发展的临界位置(如下图),现阶段智能技术落地成本较为昂贵,导致智能产品绝对量增加时,其单位成本并未明显下降。目前,人工智能头部企业加速布局, 不断完善技术生产工具(开源开发框架、数据处理、验证分析、部署监测等完备研发工具链), 加速建立全栈智能计算技术体系(形成基础计算理论、 芯片、 软硬协同、 系统协同全栈技术支撑能力), 探索孕育基础和垂直行业技术平台;产业规模化发展的进程正在不断加速,规模经济有望形成。
02.人工智能技术创新点
1、 深度学习试图从多角度融合创新,开启认知时代仍在探索深度学习仍然是人工智能技术发展的主导路线。当前,基于大量标注数据进行训练是深度学习技术实际应用的主要路线,从 1400 余万幅图片的ImageNet数据集至2020年脸书和卡内基梅隆大学构建的超过 130 万种化合物分子间作用数据集 Open Catalyst,模型训练所需标注数据普遍达十万以上。然而,这种路线在取得良好成效的同时,面临着严重依赖标注数据的问题,带来在更多细分场景中应用落地的局限性。业内不断拓展深度学习解决问题的边界, 推动人工智能进入感知增强时代。人工智能纯粹使用有监督学习方式训练深度学习模型的时代基本结束,受限于对大量标注数据依赖与理解能力缺乏,这种路径难以解决更多应用问题。当前, 感知增强时代拉开序幕,这一时期的新算法聚焦提升数据的质量和规模, 通过迁移其他领域训练成果、自主生成或增强数据、依托知识图谱常识关系、利用多源数据等方式侧面弥补深度学习的局限性。深度强化学习、多模态学习等多元化的学习方式受到产业热捧,深度学习技术与知识工程、传统机器学习等分支的结合成为学界探索的热点新方向。深度学习加速探索与多元学习方式、多种技术分支的结合, 少量数据训练、弱化人为干预以及多模态学习成为下一时期的发展关键。一是减少数据量依赖的少样本学习。少样本学习通过复用其他领域知识结构,使用少量数据对新领域进行训练, 已进入初步应用阶段,如英伟达提出基于少样本学习的视频转化( Few-shot vid2vid)框架,仅借助少量目标示例图像即可合成未出现过的目标或场景视频。二是弱化人为干预的自监督学习、强化学习。业内主流的有监督学习方式数据标注成本高昂,以机器翻译任务为例,市场人工翻译每单词平均价格约 7.5 美分, 假设单个句子平均长度为 30 个单词, 1000 万个句子人工翻译标注的成本约为 2200 万美元;若需支持上百种语言的互译,人工标注训练集的成本将达上千亿美元。这种高昂的数据成本促使学产两界加速对深度强化学习、自监督学习等范式的探索。图灵奖获得者杨立昆( Yann LeCun)加速自监督学习的研究进程,通过从未标记的数据集中学习监督信息, 提升数据无标注下的学习能力;DeepMind、 OpenAI 等机构不断演进深度强化学习算法,试图显著提升智能体的自主决策和多智协同能力。三是提高应用场景复杂度的多模态学习。应用场景正从单一视觉、语音的感知向多模态理解侧重,复杂度不断提升, 从多模态信息源中学习模态间关系成为焦点,如菜肴制作视频与菜谱文本步骤对齐、唇动视觉描述与语音信号融合预测单词等。深度学习技术正在不断挑战更为复杂的任务,扩展能够解决问题的边界。直面推理理解问题的算法路径尚无定论,距离认知时代到来仍需数年。从理论体系角度来看,深度学习的领军专家开始探索深度学习理论体系的新形态,反向传播、经典神经网络模型等已有基础理论受到质疑。目前,杰弗里·辛顿( Geoffrey Hinton)提出替代深度神经网络( DNN)架构的胶囊网络,试图解决小样本问题。然而,胶囊网络虽连续三年推陈出新,但研究进程并非叠加式的演进,而是完全不同路径的替代。从学习方式角度来看, 近一年来,强化学习实现通用智能的技术路径不再是业内共识,不依赖大量人工标注数据的自监督学习成为学习方式的新焦点,并在 2020 年 ICML、 ICLR 等全球人工智能学术会议上高频出现,已成为众多专家所关注的关键路径。然而,无论是深度学习体系的颠覆式创新,还是多种学习方式的不断尝试,具备理解能力的算法模型目前未有显现迹象, 真正的认知时代到来仍未可知。
另一方面, 深度强化学习不断提升处理复杂任务的能力, 逐步拓展芯片设计、音乐编曲等对知识技能要求更高的专业领域,如 2020 年谷歌研究人员利用深度强化学习优化设计芯片布局,达到 PPA(功率、性能、面积)的最佳平衡,显著缩短设计时间;清华大学提出用于在线伴奏生成的深度强化学习算法,能够根据输入音乐实时生成伴奏。自监督学习成为最为活跃的学习方式。谷歌、脸书等多家企业先后发布使用自监督学习的算法模型,通过挖掘无标注数据的监督信息,显著减少人为干预,在自然语言理解( NLP)领域取得显著成效,如谷歌 BERT、 脸书 RoBERTa、 OpenAI GPT-3 等。目前,学产两界正在加速自监督学习在计算机视觉( CV)领域的突破创新,已在精细图像处理方面初步取得进展,如华盛顿大学利用自监督学习方式实现图像背景的前后景分离,精度达像素级别,可实现头发丝的精确分离。
然而,尽管在自然语言理解、视觉处理等方面取得初步进展,现阶段自监督学习本质上仍依赖规范化、标签化的数据,主要借助预训练模型构造并学习数据特征,而非基于对数据内容和任务对象的深层次认知;真正理解数据内容的自监督学习尚未出现。3、 深度神经网络理论体系尝试颠覆性创新,多分支融合趋势渐显深度学习局限性日益凸显,理论体系探索革新。当前,以杰弗里·辛顿( Geoffrey Hinton)为代表的业内巨头持续推动理论体系的创新,其中,胶囊网络作为革新热点,试图解决数据依赖与不可解释问题;然而,历史上胶囊网络的三个版本更新大相径庭, 尚未形成稳定的新形态架构, 仍处于探索阶段。此外,以胶囊网络为核心的应用也在不断探索, 2020 年Hinton 团队提出一种用于机器学习安全领域的网络检测机制,显著提升攻击检出率;中佛罗里达大学学者提出胶囊路由方法,可通过输入句子查询视频中符合条件的人物及特定动作,但上述成果仍停留在研究阶段。深度神经网络与其他技术分支加速融合发展。人工智能头部企业、高校等开始摸索深度神经网络与知识图谱、传统机器学习等分支的融合创新。一方面, 知识图谱试图在不颠覆深度学习理论的基础之下,弥补小样本训练与理解推理能力不足的技术天花板。目前,面向垂直领域的专业知识图谱加速发展,已在金融、医疗、司法多个行业初步应用, 显著提升垂直行业应用中知识自动关联、 自动获取的智能化水平。如金融消费领域,蚂蚁金融知识图谱平台已经广泛应用在蚂蚁内部以及合作伙伴的微贷、保险智能理赔和智能理财等业务领域中;药物研发领域,亚马逊开发药物重定位知识图谱( DRKG)预测药物与疾病靶点结合的可能性,缩短药物研发周期并降低成本,已用于新冠病毒药物研发。另一方面, 深度学习与传统机器学习融合已显现新的算法形态;贝叶斯深度学习成为热点方向之一,有效利用先验知识解决过拟合、小样本数据等问题,模型性能超越传统深度学习方法,如 DeepMind 提出贝叶斯 RNN 模型,图注释生成任务表现显著优于传统 RNN 模型;纽约大学和三星研究人员提出基于贝叶斯思想的深度学习不确定性表示方法 SWAG, 大幅提高模型泛化能力, 在异常点检测、校准等计算机视觉任务上表现良好。4、 预训练模型加速演进,试图实现语言处理领域的通用智能预训练模型参数已至万亿级,训练成本之高几乎成为业内头部玩家的专属技术路径。2020 年, OpenAI 发布 GPT-3 模型,模型参数多达 1750 亿个,高达 1200 万美元的训练费用为预训练模型的构建构筑壁垒,中小型人工智能企业难以望其项背。2021 年,谷歌发布 SwitchTransformer 模型,再次将模型参数推至 1.6 万亿新高。此外,微软宣布与 OpenAI 达成合作协议,获得 GPT-3 语言模型源码的独家授权,升级巨型模型的寡头格局形势,预示着未来超大规模预训练模型或将掌握在少数头部企业手中。预训练模型已进入可直接用于多种自然语言处理任务的“通用”智能阶段。预训练模型再次升级,头部人工智能企业先后发布通用预训练模型,可直接面向多种自然语言处理任务使用,不再需要针对不同任务进行微调。目前,谷歌 T5、 OpenAI GPT-3 等通用预训练模型进一步提升文本理解能力,在包含阅读理解、问答等任务的基准测试中接近人类水平。另一方面,通用预训练模型加速步入产业应用阶段,OpenAI 公司发布 GPT-3 商用应用程序接口( API) ,提供问答、翻译、文本生成等服务, 搜索服务提供商 Algolia、社交媒体平台 Reddit等多家企业已开始使用。5、 模型小型化成为提升模型运行效率的关键深度学习模型效率提升成为应用落地的关键突破点。目前,深度学习模型的复杂度会随着模型精度的提升而提升,步入通过大幅增加计算量而获取高精度的时期。计算量的增长虽带来性能的提升,但高度复杂模型在硬件能力受限的设备上部署运行难度越来越大,以AlphaGo 为例, 每场比赛仅电费耗费就高达 3000 美元, 模型运行性能与硬件能力的矛盾成为模型效率的关注重点。模型小型化成为提升模型运行效率的主要方向。目前,知识蒸馏、剪枝、量化等模型小型化的技术手段逐步成熟,主流模型可达几十倍压缩率。如亚马逊利用知识蒸馏进行预训练,从 BERT 模型中提取压缩模型 Bort,压缩后模型大小仅为 BERT-large 的 6%,推理速度提升七倍 ;麻省理工学院与上海交大的研究人员提出LiteTransformer,结合量化和剪枝技术将 Transformer 模型压缩 95%,加速在边缘设备上部署自然语言处理模型的应用进程。与此同时, 开发框架中的模型压缩功能创新活跃, 模型压缩已成为开发框架必不可少的关键能力,脸书、腾讯、谷歌等头部人工智能企业以及英伟达、英特尔等芯片大厂加速构建完善模型压缩能力,依托自身算法技术与硬件芯片优势,在其主导的 TensorFlow、 PyTorch、 TensorRT 等开发框架中提供剪枝、量化等算法压缩工具, 并针对 GPU、 CPU 等硬件芯片进行特定压缩优化。6、 深度学习应用加速推动智能计算革命深度学习应用加速推动云端计算范式进入高性能计算时代。深度学习训练效果高度依赖计算资源和数据质量,追求大规模高速处理能力。当前, 全球最大规模的训练模型所需算力每年增长幅度高达 10倍。
谷歌曾预测,如所有用户每天使用 3 分钟语音搜索功能,基于传统 CPU 的数据中心算力就必须提升一倍,对算力需求快速增长的预期也促使谷歌加速研发针对人工智能应用更有优势的张量处理器。随着深度学习模型结构日益复杂以及训练样本规模持续扩大,算力需求与日俱增,对云侧计算性能提出更高要求。计算模式走向云边协同,端侧场景化算力成爆发新方向。在去中心化的计算形态下,自动驾驶、工业智能、智慧城市等边缘场景产生出大量的算力需求,边缘智能设备需要通过芯片架构、编程模型、专用加速库以及软件框架等多个环节与特定应用深度融合,实现边缘计算平台全栈能力升级,以满足低功耗、 实时性、可靠性和安全性等复杂边缘场景需求。
预计未来三年, 面向工业电子、汽车电子和传统消费电子应用等场景化智能计算芯片增长迅速,市场容量年复增长率高达 100%以上,成为推动智能芯片产业主要驱动力量。
03.人工智能产业发展趋势
1、 从谋求单点技术的“极致”,向场景化综合生态发展单项技术的“理论”准确率不再是智能企业的比拼重点,产业进入应用场景”跑马圈地”新阶段。人工智能企业单点技术标签化的特点逐步弱化,企业加速进入实质应用转化阶段,人工智能技术服务企业的变化尤为凸显。如旷视、商汤、科大讯飞等企业已将重心从视觉、语音等技术转移至社会治理、供应链物流、生活消费等领域的软硬件解决方案,从而催生出旷视天元、商汤 SenseParrots 等开发框架和基础技术服务平台。目前,以物流、零售、公共安全等为代表的先导应用领域“跑马圈地”持续白热化。旷视升级发布机器人仓储物流软件平台“河图 2.0”,并计划投入 20 亿元与合作伙伴搭建完整的机器人行业解决方案;商汤持续推进城市级开放平台方舟( SenseFoundry)在城市域落地,已覆盖全国 31 个省市、近 100 座城市,总计接入摄像头十万路;云从推出“云从起云智慧 Mall”运营平台,聚焦新零售领域帮助商业地产拥有者进行决策,实现精细化运营。场景化综合生态模式开始清晰,与“类”安卓开发者生态共同驱动产业发展。一方面, “类”安卓开发者生态模式逐步成熟,头部智能企业延续移动互联网典型发展模式,以微服务形式提供视觉、语音等技术服务,凭借第三方开发者来构建多样化的智能应用, 大幅提升开发的易用性。另一方面, 纯粹基础技术输出难以完全满足智能技术与各行业深度融合和应用落地,主要有三方面挑战:一是需要与行业专有知识深度结合;二是场景碎片化特征突出;三是使用标准数据集训练的图像识别、对话系统在实际行业场景中泛化能力不足,需基于实际场景数据进行二次训练和优化处理,这些均导致开发周期较长和开发成本居高不下。因此, 头部智能企业认识到智能技术与传统行业的深度融合应用需要构建新的发展模式。一是加速打造提供模型选择、训练、部署监测等一体化的研发平台, 奠定智能技术渗透至各行业规模化应用的基础;二是面向工业、农业、金融、公共安全等行业领域构建多样化行业技术服务及解决方案平台, 将行业特有数据、专业知识、业务流程与智能技术进行深度融合;发展速度较快的公共安全、医疗、智能驾驶等领域已初步形成垂直行业平台,提供相对通用的行业应用服务。在此基础之上,智能音箱、智能录音笔、安防无人机等垂直行业智能产品不断涌现, 场景化综合生态正在形成。2、 以科技巨头引领的产业垂直整合速度不断加快在过去的一年中, 由于人工智能发展所需算力、算法、数据等要素的高位起点以及硬件、软件框架、平台等核心环节间的紧耦合衔接特点,使得谷歌、微软等科技巨头生态系统的垂直整合引领产业整体发展;产业垂直一体化的趋势不断加强,计算支撑、软件框架、研发平台等核心环节基本被老牌科技巨头所把持。算力、软件框架、研发平台、技术服务的纵向一体化几乎成为全球头部科技企业的共识。人工智能硬件、算法、 软件平台与行业应用场景的结合紧密度空前,驱使不同环节具备点状竞争力的科技巨头争相探索行业实际应用需求。目前,产业仍为早期发展阶段,任何一个环节的水平化都尚未完全确立,过去以通用基础能力自居的芯片企业、云计算企业,抑或是具有技术独到优势的互联网企业都难以将自身的优势能力直接渗透至复杂多变的行业应用场景中来。因此,科技巨头加速从自身优势能力出发,延伸至行业应用的多个中间环节,试图以这种方式准确把握智能时代的需求方向;在持续保持自身已有优势的同时,布局支撑行业应用的多个核心环节,巩固其生态系统在人工智能时期的领导地位。亚马逊、微软等云服务企业不断强化其智能服务能力, 紧抓面向基础技术服务、研发训练与推理等智能计算需求,通过布局研发平台、开源开发框架等技术生产工具,以及更为底层的专用硬件及芯片,提升其智能计算服务的竞争力;谷歌、百度等 AI技术优势显著的互联网头部企业基于先进算法和技术优势布局开源框架,并以此为核心上下延伸,构建智能服务生态体系。以英伟达为代表的 AI 芯片巨头加速提升面向智能任务的芯片性能,积极丰富性能库、编译器、编程框架等软件配套,通过多样化方式壮大开发者社区及产业合作伙伴规模,力图构建软硬协同的产业生态体系。
与此同时,人工智能的平台生态规模不断扩大,如讯飞开放平台聚集超过175.6 万开发者团队,累计支持超过 28.9 亿终端;腾讯 AI 开放平台已服务全球用户数超 12 亿,客户数超 200 万。云服务厂商积极主导人工智能研发平台发展。云服务厂商主导人工智能研发平台的发展,亚马逊、微软、谷歌等拥有云计算业务的企业加速布局人工智能研发平台,其中,亚马逊 SageMaker 平台最为成熟,份额高于后两者近两倍,占据全球 TensorFlow 负载八成以上;H2O.ai、 DataRobot 等研发平台创新企业不断出现,成为资本市场的追捧对象,人工智能研发平台的发展空前繁荣。技术工具链成为研发平台的竞争核心。目前,研发平台整体呈现三类发展特点:一是工具体系化, 打造全面的技术工具链成为了这一时期研发平台的竞争核心,技术工具链提供数据处理、模型构建、部署、监测分析等全生命周期的工具服务,如 SageMaker Autopilot、谷歌 AutoML、微软 MLOps 等;
二是开放框架开放化, 研发平台基本均同时支持TensorFlow、 PyTorch、 MXNet 等多个主流框架;三是分布式计算不断优化, 研发平台围绕人工智能技术的特点和开发框架对自身的云计算架构进行深度优化,如 SageMaker 在256 个 GPU 下的TensorFlow 扩展效率可达 90%,并同时支持多种类型人工智能芯片。基础技术服务平台走向成熟,已形成涵盖多种基础技术的综合性平台。包含视觉、语音、自然语言处理等智能技术服务能力的基础技术平台是人工智能产业形成最早的平台形态,产业主体主要包括谷歌、微软、亚马逊等拥有云计算业务的厂商和科大讯飞、旷视科技等人工智能技术服务厂商,前者构建的基础技术服务平台在布局初期即向涵盖多种技术能力的综合性平台发展,后者早期主要依托自身某一类技术优势开展平台建设,如科大讯飞侧重语音文本,旷视则侧重视觉处理。目前,业内的基础技术服务平台形态基本成熟,领先平台基本同时包含多类技术能力。究其原因,一方面是由于基础技术能力的构建不再神秘,一家技术厂商同时拥有视觉、文本等能力的难度大幅降低;另一方面则是行业应用场景常常需视觉、语音等多种技术共同支撑,单一类型的技术服务平台不再适合目前的应用需求。垂直行业技术服务平台发展处于早期阶段, 尚未形成规模发展。除研发平台显著降低技术与垂直行业融合成本外,垂直行业技术服务平台成为另一种重要平台形态;平台把垂直行业中的关键场景、相对通用的应用技术总结提炼,进而复制推广。目前,业内主流的垂直行业技术平台存在技术服务直接输出和提供关键应用场景解决方案两种服务形态,但均未形成规模。一方面, 技术服务直接输出的形态(应用程序接口)一般面向具有成熟应用软件环节的垂直行业,由平台技术服务直接支撑下游软件集成商;此类垂直行业的应用软件环节通常进入门槛较高,或者市场空间有限,因此,人工智能技术企业缺乏与原有产业链软件集成商抢夺市场的动力。另一方面, 人工智能技术与垂直行业应用的融合对软件、智能技术、底层硬件等多个环节均提出差异化需求,驱使面向关键行业的多样化全栈解决方案不断涌现。垂直行业技术服务平台通过提供整体方案的选型和设计,同时直接提供智能技术、软件等方案中的某几种能力,推动智能技术与垂直行业场景的快速融合,如自动驾驶领域的 Apollo 平台提供雷达、摄像头等硬件选型,高精度地图、路线规划等智能软件为一体的解决方案。5、 智能计算产业形态初显,呈现蓬勃发展态势智能计算已初步形成智能芯片、软硬协同、多样化算力供给模式的产业形态。目前,人工智能芯片架构百花齐放,云侧虽仍以 GPU 为主,但端侧涌现出面向不同场景的芯片架构,英伟达、英特尔等芯片厂商面向人工智能应用的软硬件工具生态日益完善,面向深度学习的大规模分布式计算平台不断成熟,云智能服务、公共智能超算中心、自建数据中心等多种计算供给模式逐步形成。云侧智能芯片市场仍以英伟达为主导,云服务提供商及初创企业正在持续加大布局力度。传统芯片厂商英伟达加速提升其并行计算能力的优势和多线程并行软件开发生态的壁垒,2020 年推出 A100 芯片,晶体管数量达540亿, 自然语言处理模型BERT训练性能较上一代V100提升 6 倍。
谷歌、百度等云服务提供商加速升级基于各自工作负载需求的智能芯片,2020 年,谷歌发布第四代 TPU,平均性能是上一代的2.7 倍;百度昆仑 1 量产,百度搜索引擎及云计算方面部署 2 万片。另外, Cerebras, Graphcore 等初创公司布局新架构智能芯片,部分应用的运行性能优于英伟达 GPU,但这类芯片仅能提供有限的软件堆栈,面临一定的市场推广阻碍。端侧多元化应用催生大量创新探索,传统芯片企业和终端企业相对领先。汽车电子和嵌入式消费电子是这一时期端侧智能芯片创新热点。其中, 2020 年英伟达和英特尔在汽车智能芯片方面持续位于领先位置,英伟达围绕自动驾驶 SoC Orin 芯片,与理想汽车、奔驰等多家车厂展开合作;吉利概念车则将搭载英特尔 EyeQ5 芯片;恩智浦、瑞萨和东芝等成熟汽车电子供应商,黑芝麻、地平线机器人等初创企业,以及特斯拉等汽车制造商积极研发自动驾驶汽车芯片,试图与英伟达和英特尔双巨头争夺市场份额。相比之下,端侧嵌入式消费电子类市场软硬件成本以及供应链准入门槛较低,大量初创企业以不同的细分赛道加入市场竞争,其中智能手机神经网络加速芯片市场仍以高通等传统移动芯片企业和终端品牌企业为主,众多初创企业主要集中在视觉和语音处理领域,包括 NovuMind、 Syntiant 等。围绕智能计算芯片的软件工具开始从基础计算向场景计算转变。早期, 以英伟达为代表的芯片企业不断构建以 CUDA 编程模型为核心的高性能算子库、通信算法、推理加速引擎等多层次基础软件工具生态。当前,随着智能技术在传统行业中渗透的不断深入, 头部智能芯片企业开始构建面向差异化场景的软硬一体平台, 实现底层芯片、编程框架、行业算法库、细分场景研发平台等全栈高效整合,试图培育多样化行业场景的计算生态、抢占细分市场。
例如, 2020 年,英伟达围绕机器人和自动驾驶场景,打造 Jarvis 对话系统、 ISAAC 机器人等软硬一体计算平台,宝马公司使用英伟达 ISSAC 机器人平台、Jetson AGX Xavier 芯片平台以及 EGX 边缘计算机,开发包括导航、 操控等五款机器人,依托深度神经网络实现感知环境、检测物体、自动导航等功能以改进物流工作流程。多样化算力供给模式开始显现。目前,云、边、端成为算力供给的主要形态。其中,云侧算力主要以云智能服务、公共智能超算中心和自建数据中心三类供给模式为主,亚马逊、阿里云等云计算企业以云智能服务模式向中小型企业及个人售卖 AI 算力资源和技术服务,是目前最为主流的供给模式;公共智能超算中心逐步兴起,上海、深圳、重庆等多地开始投建公共智能超算中心,这类中心目前主要以政府主导建设为主,支撑本地企业、科研机构和高校的人工智能技术与应用创新,缓解地方企业及机构算力资源不足、成本较高等问题,推动区域人工智能产业的发展;
此外,谷歌、脸书等头部企业通过自建专有智能计算集群的形式提升自身业务运行性能,部分企业根据业务特点研发人工智能专用芯片,试图大幅度降低算力成本。与此同时,边缘与端侧计算模式成为热点,英特尔、英伟达等硬件芯片企业加大边缘智能专用加速产品的布局力度,面向工业、交通等云边协同场景提供解决方案;寒武纪、地平线、云知声等企业聚焦面向视觉、语音等智能任务的端侧芯片研发,在无人机、可穿戴设备、智能摄像头等智能终端中已显现规模化应用态势。6、 全球数据鸿沟仍在加大,开放共享机制与数据服务能力加速构建数据鸿沟问题愈加凸显,开放共享仍在探索阶段。全球数字化加速数据生成和积累, 数据资产对全球经济利益的分配已开始产生影响。“大规模数据→更准确模型→更好产品→更多用户→更多数据”的循环逻辑将导致数据定向收拢聚集,人工智能数据资产已开始出现寡头垄断的态势;互联网产生的数据资产半数集中在仅 100 家左右的少数头部企业中,影响全球人工智能经济利益的分配。据统计,人工智能产生的经济价值中约有 70%会累积到中美两个国家, 而若推动数据资产的全球化,大多数国家有望将 GDP 提升 1%至 2.5%。当前,各国政府、头部企业持续推动数据的开放共享,数据原则、数据合作、数据规范与数据共享平台成为重点。政府积极推动数据开放共享原则, 注重在保护隐私和公开透明原则下进行数据开放。欧盟率先出台《通用数据保护条例》对涉及隐私的敏感数据做出严格要求;英国、法国、瑞典等国纷纷跟进修订或新增;美国以原则倡议为主,政府先行数据开放,通用数据法案仍在制定中。头部科技企业出于商业利益考量,对数据开放持谨慎态度;目前,微软试图打破这一局面,发起开放数据运动( Open Data Campaign),提出开放、可用、授权、安全、隐私五大原则,鼓励数据互联互通,承诺围绕健康、环境和各种社会公益项目等问题共享数据,但尚未开放其产生利润专有数据集。跨领域数据合作也成为这一时期的热点, 其中垂直行业企业最为积极,数据合作已从点状互惠向有组织的开放共享方向发展。微软、Adobe 和 SAP 联手构建数据共享联盟,通过通用数据模型将数据存储在统一的数据湖中实现共享,吸引安永、 飞思创( Finastra)等多行业企业共同加入。同时, 数据规范与开放协议尤为重要, 国家标准化组织密切关注数据隐私问题,企业也在自发建立数据开放协议或规范,如 IEEE P7002 数据隐私处理标准、 ISO 27701 隐私信息管理体系、微软 AI 模型数据使用协议( DUA-OAI) 等。此外,谷歌、微软等科技头部企业推出 Dataset search、 Research Open Data 等自动化数据搜索平台,进一步降低数据获取难度,打造更加开发便捷的数据生态。数据集建设需求更为专业。监督学习仍是产业界人工智能算法训练的主要方式,因此大规模、高质量的人工标注数据集是产业发展刚需。目前,数据标注从简单、重复的拉框标注向精细化方向发展,呈现三类发展特点:一是数据标注流程趋于智能化, 通过预标注技术和半自动化校验的方式辅助人工标注已成为当前发展重点,业内涌现出一批标注工具,可对未标记图像直接生成分割轮廓,并借助人工进行微调;二是标注数据质量要求不断提升, 自动驾驶、工业制造等智能任务场景愈之复杂,高质量、精细化的标注数据直接影响算法鲁棒性和准确性,标注准确率需求从 90%提升至 99%;
三是医疗、工业等差异化垂直应用驱动数据标注服务进一步贴合个性化、多元化的场景需求, 如数据服务企业 Scale AI 为自动驾驶场景提供标注服务,对车道、烟尘、尾气、雨水等更为个性化的目标物体进行标注。具有智能标注能力的数据服务企业受到资本热捧。以数据标注为代表的基础数据服务市场规模快速增长,资本市场进一步推高专业数据标注企业的估值。2020 年,专业数据标注企业 Labelbox 完成 2500万美元 B 轮融资;龙猫数据获得 3300 万元 Pre-B 轮融资。目前, 数据的智能化标注能力成为这一时期数据服务企业的发展重点;一方面,传统数据众包平台企业向专业数据标注企业发展,快速布局智能标注工具,数据服务企业澳鹏( APPEN) 花费 3 亿美元收购数据标注公司 Figure Eight, 大幅提升企业数据服务竞争力;另一方面,智能标注工具企业不断涌现,如 Scale AI、 Supervisely、马达智数等。7、 以开源开发框架为核心的生态体系雏形渐显, 多种小生态同步形成当前,全球人工智能产业生态雏形渐显。从产业链全局角度看,开源开发框架既是最具技术含金量的环节,同时也是芯片、应用开发等多个主体集聚的环节,伴随时间积累,将具有很强的不可替代性和制约性。目前,谷歌、脸书等人工智能头部企业围绕开源开发框架构建的核心生态已初步形成。
从产业主体角度看, 人工智能产业既对信息产业自身的产品形态、运行模式产生很大变革,同时影响传统行业生产运营方式和运行效率。因此,产业的参与主体几乎涵盖全信息产业以及传统行业企业,云计算、芯片、 ICT 设备、互联网、智能技术服务、垂直行业 AI 企业和传统行业企业等多主体正在围绕自身优势不断摸索产业生态模式。人工智能头部企业构建开源开发框架生态, 试图形成应用接口和硬件适配的双向主导权。一方面, TensorFlow、 PyTorch 等开发框架不断完善其高级语言接口,推动业内大量的算法模型和智能应用基于其高级语言接口进行研发,形成深度的绑定。由于转换至其他框架会一定程度上影响模型性能、增加二次研发成本,长此以往,大量应用将深度依赖原有开发框架进行训练和推理,形成产业默认的事实接口标准。另一方面, 框架市场份额领先的人工智能头部企业正在依托框架与智能芯片适配构建标准化硬件接口, 有望进一步增强其对智能芯片的话语权。如, 谷歌通过构建统一编译中间表示语言( IR) ,驱动硬件厂商主动适配其 TensorFlow 框架,从智能芯片主导适配向统一中间表示语言( IR) 主导适配转变。目前,由于智能芯片的技术路线百花齐放,仍在摸索阶段,因此框架适配生态仍在构建初期,尚未形成。产业主体以自身优势切入,初步形成四种小生态模式。一是人工智能全面融入云服务体系,云服务厂商积极构建 AI 基础设施生态。亚马逊、微软、谷歌为代表的厂商布局人工智能专用硬件、开源开发工具、研发平台、技术服务、 行业使能方案等全栈 AI 技术支撑体系,如, 2020 年微软在研发平台、技术服务等方面持续深耕基础上,向下在硬件基础设施方面联合 Open AI 建立智能超算中心, 向上在垂直行业布局方面推出行业云解决方案 Microsoft Cloud for Healthcare,与智慧医疗、医疗机构合作,帮助医生和医疗机构使用AI 技术实现精准医疗服务。二是人工智能技术服务企业、互联网企业以视觉、语音等技术优势切入,加速打造垂直行业技术服务平台和解决方案生态。当前,该类主体正在加速推动智能技术在各行业中的应用落地,在不断完善开发框架、基础技术服务平台的同时,聚焦构建面向行业场景的平台生态,涌现出一批如依图 care.ai(医疗)、百度 Apollo 开放平台( 自动驾驶)等行业平台。三是传统企业以行业经验切入,强调解决问题的实际应用能力,积极构建围绕基础科研、成果转化、 产业培育多维度的创新生态。传统行业头部企业针对颠覆性、前沿性技术展开系统布局,巩固行业领先地位和优势;如大众奥迪聚焦自动驾驶场景,建立奥迪 JKU 深度学习中心,成立硅谷研发办公室,加大力度研发先进驾驶员辅助系统,同时发布自动驾驶数据集推动商用和学术研究, 打造多维度产业生态。四是硬件厂商以芯片设计、整机集成为切入点,加速构建软硬协同产业生态。英伟达、英特尔、华为、浪潮等芯片、设备厂商围绕其芯片和计算设备积极丰富性能库、编译器、编程框架、编程工具等配套软件,通过多样化方式壮大开发者社区及产业合作伙伴规模,力图构建软硬协同的产业生态体系。
04.我国人工智能发展重点与机遇
1、 十三五期间我国总体发展情况发展人工智能是党中央、国务院准确把握新一轮科技革命和产业变革发展大势,是为抢抓人工智能发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家和世界科技强国,所做出的重大战略决策部署。十三五以来,我国人工智能产业发展迅猛,政策环境持续优化,创新能力不断提升,产业规模进一步壮大,融合应用逐步深入,特别是新冠疫情防控期间, 人工智能技术产品形成“智能抗疫军团”,有力支撑了我国疫情防控和复工复产。1)、人工智能政策环境持续优化。我国人工智能发展进入快车道,自 2015 年 7 月国务院出台的《关于积极推进“互联网+”行动的指导意见》首次将人工智能纳入重点任务之一,至 2017 年 7 月国务院印发《新一代人工智能发展规划》将其上升至国家战略,人工智能发展政策环境不断完善。截至 2020年,党中央、国务院及各部门出台人工智能相关政策 10 余项,连续4 年将人工智能写入政府工作报告,如工信部、教育部相继出台《促进新一代人工智能产业发展三年行动计划( 2018-2020 年)》、《高等学校人工智能创新行动计划》等多项政策文件,为我国人工智能发展营造了良好的发展环境,各地方超过 20 个省市自治区相继出台人工智能专项规划 60 余项。2)、 人工智能技术创新能力持续提升。我国企业在应用算法、专用芯片、开源开放平台、智能传感等核心关键技术上已取得局部突破,其中寒武纪、地平线、思必驰等神经网络芯片实现量产并在安防、汽车、语音领域实现规模化应用;百度、阿里、华为、腾讯、旷视、科大讯飞、第四范式、京东等一批AI 开放平台初步具备支撑产业快速发展的能力,其中百度 AI 开放平台已超 260 万开发者。部分关键应用技术居世界先进水平,特别是视频图像识别、语音识别等技术全球相对领先。人工智能论文总量、高倍引用的论文数量和发明专利授权量,处在第一梯队。3)、 人工智能产业规模不断发展壮大。产业生态基本形成,产业整体实力显著增强。截至 2020 年,我国人工智能产业规模、核心企业数量,包括独角兽企业数量均仅次于美国,位居全球第二位,覆盖技术平台、产品应用等多环节,基本建立了比较完备的产业链。人工智能芯片、智能语音、计算机视觉等创新产品不断涌现,医疗影像、智能语音、智能翻译、自动驾驶等产品已达国际先进水平,智能安防、 消费无人机等领域具备全球竞争优势。人工智能产业初步形成京津冀、长三角、粤港澳、成渝等地区集聚发展、协同推进格局。4)、 人工智能行业融合应用不断深入。我国人工智能产业发展不断深入,与一、二、三产业融合成效初显,正在从部分先导领域如医疗、交通、教育等服务领域向制造业、农业等产业领域拓展;智能金融、智能医疗、智能安防、智能交通等领域已经成为企业加速人工智能技术产业化落地的热点应用场景,智能化新产品、新业态、新模式不断涌现。新冠疫情防控期间,人工智能技术加速在医疗、应急、教育、制造等领域普及应用,一批人工智能 CT 影像辅助诊断设备、智能测温+识别系统、智能机器人等抗疫产品,形成“智能抗疫军团”,支撑疫情防控和复工复产成效显著。5)、 积极探索人工智能伦理和治理实践。我国政府高度重视人工智能伦理道德问题,积极构建有利于人工智能健康有序发展的体制机制。为进一步加强人工智能相关法律、伦理、标准和社会问题研究,新一代人工智能发展规划推进办公室成立新一代人工智能治理专业委员会, 2019 年 6 月发布《新一代人工智能治理原则——发展负责任的人工智能》,提出人工智能治理框架和行动指南,强调和谐友好、公平公正、包容共享等八条原则。与此同时, 2019 年全国人大常委会已将一些与人工智能密切相关的立法项目列入立法规划, 例如数字安全法、个人信息保护法和修改科学技术进步法等。在工业和信息化部等相关部委指导下,中国人工智能产业发展联盟(简称:AIIA)发布了《人工智能行业自律公约》,引导企业加强人工智能伦理自律探索。各地地方积极探索人工智能治理实践,在制定人工智能相关政策中,支持人工智能伦理治理、法律法规等相关研究探索,《人工智能北京共识》、 《人工智能创新治理上海宣言》、《世界人工智能法治蓝皮书》等成果相继发布。当前,产业界和学术界协同推进,腾讯、百度、旷视等企业纷纷践行人工智能伦理原则,设立管理机构;全国多个高校、研究机构等开展人工智能伦理治理、法律法规等方面的研究,如 2020 年 6 月,清华大学成立了人工智能国际治理研究院。2、 十四五期间我国发展方向与机遇1)、 加快 AI 基础原创技术的创新突破,打造融合创新生态系统。我国人工智能技术创新处于前所未有的活跃期。当前,我国专利申请的活跃度与论文产出规模已位于全球前列,专利申请总量达 30.1万件,占全球总量的 39%,是美国的两倍以上;近 10 年论文产出总量超过 18 万篇, 2019 年论文规模是美国的近 1.5 倍。同时,我国视觉、语音等智能任务全球比赛的参与度和入榜率极高,多次在对话式问答、阅读理解、 人脸识别等全球比赛中刷新智能任务的 SOTA13模型准确率。我国发起的全球性比赛规模不断扩大, iFLYTEK A.I.开发者大赛 2020 年参与团队达 9000 余支,腾讯广告算法大赛参与人次达万余名。2)、 将人工智能技术体系中的基础理论、 原创及优化技术和共性应用技术, 依据创新程度和突破难度从高至低划分为颠覆、阶跃、创新优化和工程实现等四个发展层级。目前, 我国在创新优化和工程实现技术方面有一定优势,但颠覆型、阶跃型技术仍非常缺乏引领作用。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”
科技
-
-
- 人工智能核心技术产业白皮书!资本降温,白热化竞争来临[附下载]|智东西内参
- 来源:智东西编辑:智东西内参在过去一年中,人工智能的新算法不断涌现,深度学习仍是这一时期发展主线,尝试解决更为复杂的应用任务。人工智能的产业格局与生态体系更为明晰,开源开发框架格局逐步确立,以科技...
- 人工智能学家
-
-
-
- 余承东驾上「华为云」,路向何方?
- 面对阿里云这样的目标,华为云的「减法」能否有用?余承东执掌云计算业务后,其首秀留给了华为云的开发者们。4 月 25 日,华为开发者大会 2021(Cloud)(简称 HDC.Cloud 2021)上午 Keynote 环节,最大的亮点之...
- 极客公园
-
-
-
- 2021上海车展智能汽车观展报告(附28页PDF文件下载)
- 4月19日-4月28日,为期10天的2021年上海车展正在如火如荼的举办着。作为今年全球首个A级车展,上海车展期间,各个车企都不遗余力的展示出其最新的创新成果。我们筛选出部分在智能化方向上,较有亮点的企业和产品...
- 汽车之地
-
-
-
- 企业数字化转型遇瓶颈——比技术更难的,是思维和意识
- 记者 | 刘禹摄影 | 季俊辉 如何抢抓新一轮科技革命和产业变革机遇,推进企业数字化转型,强化企业技术创新主体地位,是当前数字化转型的重要课题。4月21日,上海市科协联合德勤中国在科学会堂共同举办“企...
- 上海科协
-
-
-
- 沈阳市与华为深化战略合作,推进打造“东北数字经济第一城”
- 4月26日,沈阳市人民政府与华为技术有限公司签署深化战略合作协议,加快推进沈阳市产业升级转型,为数字沈阳、智造强市建设提供更强动力。沈阳市市长王新伟,市政府秘书长曹鹏,华为公司轮值董事长徐直军,华为...
- 华为
-
-
-
- AOC精彩亮相第四届数字中国建设峰会,全屏赋能数字化建设
- 4月25日,由国家互联网信息办公室、国家发展和改革委员会、工业和信息化部、国务院国有资产监督管理委员会、福建省人民政府共同主办的第四届数字中国建设峰会在福建省福州市盛大开幕。一场创新绽放、“数字”舞...
- AOC未来视界
-
-
-
- 任正非答外媒记者问:我挺身而出,为了救女儿,也为了救华为(采访全文)
- 7月18日,华为创始人任正非在松山湖基地接受意大利媒体的采访,包括《共和报》《晚邮报》《24小时太阳报》、意大利通讯社、安莎通讯社等。以下是华为官方公布的采访全文。作 者:任正非来 源:心声社区非常欢迎...
- 环球老板商学府
-
-
-
- Fedora 34正式版发布
- Fedora是由Fedora项目社区开发、红帽公司赞助的操作系统,近日其正式推出Fedora 34版本。Fedora 34继续使用Btrfs作为默认的文件系统,在此基础上默认启用了基于Zstd的透明文件系统压缩能力,并从PulseAudio
- 大众软件
-
-
-
- 你知道手机话费有透支额度吗?其实欠费停机仍可充值
- 01神秘的话费透支额度每月月初,对于有些迷糊的小伙伴而言,手机突发停机已经是常态了,可你知道手机话费其实和信用卡一样具有透支额度吗?手机欠费,有的人立马停机,有的人还能撑一段日子,有人却能无限透支,...
- 电脑报
-
-
-
- [聚焦]国内云计算市场 华为、阿里、腾讯云掀起“内卷”效应
- “努力活下去”的华为正在开辟新赛道,除了新增全屋智能领域和卖车外,这次故事线还有“云”上征程。从年初开始,短短三个月里华为在云方面进行多次战略调整,频繁变动令吸引了一波流量聚焦在华为云上。而今,作...
- DIGITIMES
-
-
-
- Win10更新又双叒翻车 这几天出了这些问题都是它的锅
- 点击上方电脑爱好者关注我们最近微软又开始给大家推送一个累计更新包KB5001330,目的是修复之前发现的一些问题。现在看来,它引入的问题比解决的问题更多更严重,这几天突然发现电脑有点不对劲的小伙伴赶紧看一...
- 电脑爱好者
-
-
-
- 第四届 Power BI 可视化大赛燃炸来袭!
- (本文阅读时间:3分钟)时隔一年,万众瞩目的第四届 Power BI 可视化大赛终于在今日正式开启!万元大奖虚位以待、专业评审天团坐镇,为所有 Power BI 爱好者奉上一场数据可视化的饕餮盛宴。无论你是刚接触 Powe...
- 微软科技
-
-
-
- 根深才能叶茂,打造数字中国新生态
- 4月25日,第四届数字中国建设峰会在福州召开。华为轮值董事长胡厚崑在主论坛发表演讲,主题为 “根深才能叶茂,打造数字中国新生态”。胡厚崑表示:“只有根扎稳了,才有产业的参天大树;只有各方携手努力,才有...
- 华为
-
-
-
- 探访上海影创科技|鸿鹄实机上手评测,带来了哪些惊喜?
- 鸿鹄体验,老友相见……文 | 阿鱼(VRPinea 4月26日讯)本月14日,P君受邀来到了上海影创科技大厦,上手体验了一波影创科技目前正在预售的新一代MR眼镜——鸿鹄。鸿鹄是影创科技同英国PhotonLens联合设计的首批...
- VRPinea
-
-
-
- 500年历史的手术机器人,是改变未来十年的希望吗?|一页手册·协和八
- 编者按 2021年1月27日上午,北京协和医院名誉院长赵玉沛院士主刀完成了北京协和医院第1000例机器人手术。机器人手术到底是什么?具体是如何操作的?发展前景如何?今天,小编就带大家领略机器人手术的风采。手术...
- 协和八
-